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1. Abstract

This paper presents an overview of the design and controlling equations for a 6-degree-of-freedom

force-feedback j_stick for telemanipulation. The joystick has a parallel mechanical structure which

allows all of its actuators to be fixed to a non-moving base. The low-inertia design is expected to
provide an accurate force-feedback signal to the joystick operator without the need for closed-loop

momentum compensation. The analysis describes the joystick's inputs and outputs in generalized

Cartesian space, so the joystick can potentially be used as an interface for any 6.degree.of-freedom
device.

2. Introduction

Telemanipulator joysticks are typically serial mechanisms similar to the serial manipulators they

control. Serial mechanisms have the disadvantage that each joint actuator has to support its own load as

well as the mass of all the other actuators higher up the kinematic chain. Serial mechanisms are
therefore inherently high-mass systems. In a parallel mechanism, all of the joint actuators are fixed to

ground, so the inertial mass of the mechanism will be significantly less than for a similarly sized serial
mechanism. Furthermore. each actuator in a parallel mechanism shares the loadi the result is a smaller

torque requirement on each actuator. And since the ¢ctuators share similar loads, one design is

sufficient for all the actuators. To use a parallel structure jogstick to control a manipulator with a

different kinematic structure, a microprocessor is required to transform information to and from the

joystick actuators into Cartesian vectors which can be understood by the manipulator controller. This

paper presents an overview of the design and kinematic and dynamic analysis for a parallel mechanism

force-feedback joystick for telemanipulation of a 6-degree-of-freedom device.

2.1. Physical Description

The 6-degree-of-freedom force feedback joystick is shown in Figures I and 2. The design is based

on a unilateral (no force-feedback) joystick developed by the Center for Intelligent Hachines and Robotics

at the University of Florida [1]. The design presented here is currently under development by Tesar and

the Hanufacturing Engineering Systems Group at the University of Texas at Austin. This paper is based
on the author's Haster's thesis [2] and summarizes some of the progress made by the research group at

Texas. Implementation issues such as software development, specific design requirements, and
calibration techniques are addressed in reference [2].

The 9 -string design consists of a T-shaped. ambidextrous handgrip supported by nine steel cables, or

"strings," and three passive, constant-force linear actuators. The cables are attached to motorized spools

arranged in three triangles on three perpendicular faces of a box enclosing the jogstick's working volume.

Bg measuring the length of each cable as the handgrip moves, the position of three points on the handgrip.
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Figure I. The 9-3trlng Force-Feedback Joystick
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Figure 2, Detail of an Actuator Assem_lg

and hence the handgrip orlentatton and position, can be calculated. Force feedback is accomplished by

controlling the tension in each cable with the motorized spools. The resultant of the force vectors from

the cable tensions and the linear actuators is a force and torque vector in ang desired direction at the

center of the grip.
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Prototgpes of the motorized spools, shown in Figure 3. have been built by Houston Scientific
International. Inc. The actuator design is basically an off-the-shelf position transducer with a OC servo

motor rather than a spring motor for cable tension. A high-pracision potentlorneter attached to the spool

measures cable length.

The initial design for the passive linear actuator was an air cylinder connected to a constant

pressure source. The cylinders obtained for the prototype Joystick had unacceptably high mass and
friction, however, so other designs are being investigated. The author recommends the design shown in

Figure 4, which uses constant force springs.
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Figure 3. Detail of the Motorized 5pool Figure 4. Detail of the Constant-Force Spring Linear Actuator

The baseline joystick controller is a DEC HicroVAX, but the research team believes it would be
feasible to use a tess powerful computer such as an IBH PC as a dedicated controller, end still maintain

an update rate of 30 Hz or better.

The baseline 9-string joystick design parameters are as folloWS:

Translational Volume

Orientation Range

Force Feedback Range

Torque Feedback Range

16 inch cube

180 degrees each axis

9 pounds
2 foot-pounds

The ranges of motion and force-'feedback were chosen based on human factors guidelines for comfortable
manual control [3].

3. Position Analy=is

This section describes the kinematic equations for determining the position and orientation of the

joystick handgrip from the string lengths.

3.1. Three Intersecting Strings"

The first step in the kinematic solution is to determine the positions of the three points o6 the

handgrip where strings intersect. Lipktn derived the solution in reference [1]. The solution is presented
for one set of three strings, and can be generalized for the other two sets by a coordinate rotation. The

form of the solution is simplified considerably by defining a local reference frame (frames (I}, (2). and
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(3) in Figure 1) parallel to the global joustick coordinate frame (0), with the origin at point I)1. Point 1_
lies along the U axis and _ lies in the x-g plane. The strings sl, s2, and ss intersect at point P.

: ..

Lipkin's solution is shown below. The cs) superscript indicates that coordinates are in coordinate

sgstem (1) (vectors without a superscript are in the global coordinate sustem (0)), and the trailing

superscript indicates the vector component, st is the length of string i.

II)PU = (sl 2 - s22 • (n)b2U)2) / 2 ¢1)b2v (3.1.1)

mpx = (s!2. s52. (¢1)bsX)2. (CtJbsu)2.2 mPV Cl)bsV) / 2 Ct)bsV (_.1.2)

Cl)pz = ±_/(s12 . (rap=)2 . (mpy)2) (5.1.3)

Equation 3.1.3 has two solutions, one above and one below the x-g plane. The correct choice is obvious

from the phgsical constraints or the jogsttck= the positive solution is correct for all three sets of

strings.

Since the reference frame (1) is parallel with the global frame (0), point rap_ can easilg be

translated into the global frame.

Because of phgsical design constraints, the strings intersect at points on the linear actuator rods,

rather than on the arms of the jogstick. However, point J on the jogstick can be found from point P.

since theg both lie in the direction of the vectors 4. a fixed distance c apart, as shown in Figure 2.

First we define _-4 as the free vector.

• 4 - E - _4 (5.1.4)

where _4 is theposition of the bottom universal jointaxis of the linear actuator. J is:

= ( s4. c)!4 • _4 (5.1.5)

where s4 is the magnitude of _4 and _4 is the unit vector in the direction of _4.

5.2. Orientation of the Jogstick

After determining the positions of three points on the jogstick grip, we must find its orientation and

the position of the center of the grip. We can do this bg deriving the rotation matrix from the local (J)

reference frame fixed in the center of the grip to the global (0) reference frame, shown in Figure 5. The

points J1-3 are equidistant from J-o, located at the corners of an equilateral triangle. This arrangement

results in an equal distribution of the force-feedback load to the actuators and minimizes errors in the

orientation solution, as recommended bg Lipkin [1]. The unit vectors _/, i, and _k are defined as the

direction cosines of the (J) sgstem x, g, and z axes in the global frame (0). The arms of the jogstick lie

in the x-g plane of the (J) sgstem, with the top of the T parallel to the cj)g axis, and these properties are
used to find the direction cosines as follows:

i  --Jsl (5.2.1)

_k= ((_J_-_)xi)/ I(J__-_)xi] (3.2.2)

L= ,L x _k (5.2.5)
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Figure 5. Forces on the Handgrlp Figure 6. Actuator Force Vectors

The 3x3 rotation matrix from the (J) to the (0) sgstem is simplg,

[Rj 0]=[ii k]
(3.2.4)

since we know the position of I at least one point on the grip in global coordinates, the vector from

that point to the center of the grip in local coordinates, and the (J) to (0) rotation matrix, the center of

the grip -J-ocan be calculated in global coordinates:

J-o= _J1- [RJ°] (JiJ1 (3.2.5)

(J)Ji is the vector from the origin of the (J) frame, J-o. to point J-1 in local coordinates.

4. Force-Feedback Analgsts

The desired force and torque vector on the handgrip is a signal generated bg the telemanipulator

controller, representing forces felt bg the telemanipulator. These vectors are assumed to be expressed
in a coordinate frame parallel to a local frame fixed to the handgrip. This section describes the

transformations which relate cable tensions to a desired force on the handgrip.

4.1. Transformation from the Force and Torque at the Center of the Handgrip to Three Forces

This transformation is easier to think about bg posing it backward. Given three force vectors on a

bodg as shown in Figure 5, the resultant force and torque at point ._o is.

(j)F 0 = _. (JiF i (4.1.1)

(4.1.2)
(J)_O : _ ( (J]Jl X (J)F I )

where i is summed from I to 3. Note that all vectors throughout this transformation are in the local (J!

coordinate frame, fixed to the grip. Equations 4.1.1 and 4.1.2 can be rewritten in matrix form as

_c= [Gcf]T _f (4.1.3)
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where _c,[Gcf]T. and f_are defined as:

FoX 1 0

Foil , 0 1

FoZ : 0 0

Z:oX 0 0

%V 0 0

Z:oZ 0 J1x
• o

0 1 0 0 1 0 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

0 0 0 J=V 0 0 JaY

-J1 x 0 0 -J2 x 0 0 -Ja x

0 -J2 v J2x 0 -J3g J3x 0

F,= ]

F,Y i

F1z
F2x

F2V

F2Z

FaX

iF:IV
Faz

The reference frame superscript (J) has been omitted in the equation above for readability, but the

vectors are still in the (J) coordinate system.

Now the problem is to invert equation 4.1.4 and solve for _f. Since there are more unknowns than

knowns, we will choose a cost function and use classical optimization to find the solution. A logical

choice is to minimize the force on each arm of the grip, which will minimize the tension on each string,

reducing each actuator load. The cost function q is defined as:

q : _fT._f (4.1.5)

which is the sum of the squares of the force components, q is minimized subject to the set of

constraints _r.which in our case is equation 4.1.3. rewritten as:

I" = C -[Gct] T _f : 0 ('4.1.6)

We can now form the Lagrangian:

L : q • ),T. r (4.1"7)

where _ is the 6 eiement vector of Lagrange multipliers. Partial differentiation of the Lagrangian with

respect to _fand __yields 15 equations and 15 unknowns, which is sufficient to solve for _f in terms of _c.
The result is:

_f : [Gcf] ( [Gcr]T [Gct] )-1 C_ (4.1.8)

Since [Gcf]([Gcr]T[Gcr]) -1 is derived from constant geometric parameters (the shape of the joystick

handgrip), it is constant and needs to be calculated only once. Now the solution for f_.is a

straightforward matrix multiplication. For this design's particular grip geometry (an equilateral

triangle with sides of length L). the solution is:
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FlX

FlY

F1z

F2X

F2V =

F2Z
F3X

F3V
Fsz

I13 O 0 0 O 0

0 I/3 o o o ,/3/3L
O 0 1/3 0 -2,/3/3L 0

1/3 O O O O -1/2L

0 1/3 0 O 0 -,/3/6L

O O 1/3 I/L ,/3/3L 0
1/3 0 0 0 O 1/2L

O 113 O O O -_/3/6L

0 0 1/3 -I/L ,/313L 0

Fox

FoU

Foz

"CoX

-coy

-coz

(4.1.g)

Finallg, keeping in mind that f in equation 4.1 .g is in the (J) coordinate frame, we need to rotate the
force on each arm of grip into the global coordinate frame with the rotat=on matrix derived in Section

3.2:

Ft : [Rj°]" (J)El (4.1 .I0)

4.2. Transformation from the Force on a Grip Arm to Cable Tensions

The cables exert a force vector at point P on the linear actuator rather than at point J where we

have calculated the desired force. However, if the distance between P and J_ is small relative to the

distance from P to the linear actuator's bottom pivot, a force vector at J will be approximately equal to

the same vector applied at P. We will assume this is true to proceed, although the transformation from

a force at IF> to a force at J is derived in reference [2]. The solution for the tensions in one set of cables

is presented here. The solution can be generalized for the other two sets by a coordinate rotation. The
force vectors from the actuators are shown in Figure 6.

If it were not for the linear actuator, the resultant force F_pwould be constrained to point inside the

tetrahedron formed by the strings, and force-feedback in an arbitrary direction would not be possible. A
constant force linear actuator is desirable because it reduces the computation load on the joystick

controller. Given the three vector components of the force at P, the controller has to calculate only

three, rather than four, actuator forces. Also, constant force can be implemented with a passive

actuator, simplifying the design task. The force from the linear actuator can be chosen off-line to

optimize performance parameters, such as the force-feedback range [21.

As in Section 4.1. it is easier to state the transformation from force to string tensions backward

and then invert it to solve for the unknowns. The vector F_pis the sum of the actuator force vectors. The

actuators act in the directions of unit vectors _$.j,defined as (P- bj)/s I (s I is the string length). The

strings act with tensions TI.a (tensions are negative) along -$-1-a, and the linear actuator acts with

compressive force T4 (positive) along _s4. Ep can be written in matrix form as:

F_p: [_S1 _S2_J] [Tt T2 T_]T • T4_.4 (4.2.1)

Solving 4.2.1 for T1. 3 yields:

IT, 1
IT, I
IT, I
L J

=[ S I_s2_s3]-1 (F_p. T4 =I4) (4.2.2)
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Rather than performing a matrix inversion three times per loop of/the//joystick controllino software (one

inversion per set of three strings), the inversion is done s_bolicaily off-line, and the controlling

software merely plugs values for P and F_.pinto the equat_o calculate the string tensions.

5. Conclusions /

The 9-string force-feedback joystick presented i_ ;. an innovative approach to man-_

machine interface design. Sg taking advantage of the/powerful m!crncomputers available for real-time_
control, telemanipulator design is no longer constrai/ded to the replica master-slave systems of the past.

This paper presented an overview of the design an_ythe analytic feasibility for the joystick, it is now a\

matter of mechanical development to build and _rhonstrate the concept.
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